dss
Sao Paulo
Brazil
ph: +55-19-99710.7134
dss
Advisory Board Member of the following institutions or meetings:
Reviewer of the following publications and meetings:
de Souza-Santos, M. L., Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operation, 2nd Ed. CRC Press, New York, NY, USA, 2010 (ISBN: 978-0-8247-0814-6).
de Souza-Santos, M. L., Analytical and Approximate Methods Applied to Transport Phenomena, CRC Press, New York, NY, USA, 2007 (ISNB: 978-0-8493-3408-5).
de Souza-Santos, M. L., Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operation, Marcel Dekker, New York, NY, USA, 2004 (ISBN: 0-8247-0971-3).
de Souza-Santos, M. L., A Study on Pressurized Fluidized-Bed Gasification of Biomass through the Use of Comprehensive Simulation, Chapter of the vol. 4 of the Book on Combustion Technologies for a Clean Environment, Gordon and Breach Publishers, Amsterdam, Holland, 1998.
"I have made extensive use of your very helpful book [Analytical and Approximate Methods in Transport Phenomena]. Thank you for writing it! I am especially grateful for the extensive Laplace Transforms tables."
Jerry Meldon
Associate Professor
Chemical and Biological Engineering Department
Tufts University
Medford, MA
Up to this date, ResearchGate indicates surpassing 770 citations. Among them:
1. Eckert, E. R. G.; Goldstein, R. J.; Ibele, W. E.; Patankar, S. V.; Simon, T. W.; Decker, N. A.; Girshick, S. L.; Strykowski, P. J.; Tamma, K. K.; Barcohen, A.; Heberlein, J. V. R.; Hofeldt, D. L., Heat-Transfer - A Review of 1990 Literature, Int. J. Heat Mass Transfer, V. 34, No. 12, 2931-3010, 1991.
2. Mitrovic, J., Heat-Exchanger, Brennstoff-Warme-Kraft, V. 34, No. 34, 226-237, 1991.
3. Adanez, J.; Abanades, J. C., Modeling of Lignite Combustion in Atmospheric Fluidized Bed Combustors. 1. Selection of Submodels and Sensitivity Analysis, Ind. Eng. Chem. Res., V. 31, No. 10, 2286-2296, 1992.
4. Gurujan, V. S.; Agarwal, P. K.; Agnew, J. B., Mathematical Modelling of Fluidized Bed Coal Gasifiers, Trans. IChemE., V. 70, Part A, 211-238, May 1992.
5. Águas, M. P. N., Azevedo, J. L. T., Carvalho, M. G. M. S., Modelling the Heat Transfer in a Fluidized Bed Combustor, Heat and Technology, Vol. 10, No. 1-2, 107-124, 1992.
6. Jiang H., Morey R. V., Pyrolysis of corncobs at fluidization. Biomass and Bioenergy, Volume 3, Issue 2, 81-85, 1992.
7. Jiang H., Morey R. V., A numerical model of a fluidized bed biomass gasifier. Biomass and Bioenergy, Volume 3, Issue 6, 431-447, 1992.
8. Adanez, J., Abanades, J. C., Gayan, P., Effect of Steady-state Heat Balance for Char on AFBC Modelling, Fuel, Vol. 72, No. 9, 1335-1342, 1993.
9. Yang, S. A., Chen, C. K., Effects of Surface-Tension and Nonisothermal Wall Temperature-Variation upon Filmwise Condensation on Vertical Ellipsoids Sphere, Proceedings of the Royal Society of London Series A - Mathematical Physical and Engineering Sciences, 442 (1915) 301-312, Aug. 9, 1993.
10. Bilodeau, J.-F., Thérien, N., Proulx, P., Czernik, S., Chornet, E., A Mathematical Model of Fluidized Bed Biomass Gasification, Canadian Journal of Chemical Engineering, Vol. 71, 549-557, 1993.
11. Reddy G. V., Mohapatra S. K., A mathematical model for exit gas composition in a 10 MW fluidized bed coal combustion power plant. Energy Conversion and Management, Volume 35, Issue 12, Pages 1049-1060, December 1994.
12. Reddy G.V., Mohapatra S.K., A mathematical model for exit gas composition in a 10 MW fludized bed coal combustion power plant, Energy Conversion and Management, 35, 1049-1060, 1994. doi:10.1016/0196-8904(94)90009-4
13. Maier W.F., Franke, R. , Methanopyrolysis of coal, Fuel, 73 (1), 5-9, 1994.
14. Milioli, F. E., Foster, P. J., A Model for Particle Size Distribution and Elutriation in Fluidized Beds, Power Technology, 83, 265-280, 1995.
15. Milioli, F. E., Foster, P. J., Entrainment and Elutriation Modelling in Bubbling Fluidized Beds, Power Technology, 83, 233-243, 1995.
16. Azevedo, J. L. T., Carvalho, M. G., Foster, P., Modelling of Wood Combustion in Fluidized Bed, Third International Conference on Combustion Technologies for a Clean Environment, 2575-2579, Lisbon, Portugal, July 3-6, 1995.
17. Milioli, F. E., Atmospheric Bubbling Fluidized Bed Combustion: Application to High Ash Coals and Approach to Scientific Research, Brazilian Journal of Mechanical Sciences, 1996.
18. Ushima, A. H., Modelling and Simulation of Biomass Pyrolysis and Drying in a Up-Draft Moving Bed Gasifier, M.Sc. thesis presented at UNICAMP - University of Campinas, Campinas, Sao Paulo, Brazil, 1996.
19. Sriramulu, S., Sane, S., Agarwal, P., Mathews, T., Mathematical Modelling of Fluidized Bed Combustion, Fuel, Vol. 75, No. 12, 1351-1362, 1996.
20. Jensen, A., Johnsson, J. E., Modelling of NOx Emissions from Pressurized Fluidized Bed Combustion—a Parameter Study, Chemical Engineering Science, vol. 52, No. 22, 1715-1731, 1997.
21. Reddy, G. V., Sinha, A., A Mathematical Model for Coal Combustion in a 10-MW FBC Power Plant, Energy, 22(4), 381-387, Apr., 1997.
22. Norman J., Pourkashanian M., Williams A., Modelling the formation and emission of environmentally unfriendly coal species in some gasification processes. Fuel, Vol. 76, No. 13, pp. t201-1216, 1997.
23. Gu F., Effect of pulverized coal particle size on the combustion rate in ironmaking blast furnaces, Fuel and Energy Abstracts, 38 (4), 255-255, 1997.
24. Kaneko T., Horii K., Dephosphorization of molten iron, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997
25. Stamatelos A.M., A review of the effect of particulate traps on the efficiency of vehicle diesel engines, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997
26. Heckmann H. , Coals and coal requirements for the COREX process, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997
27. Wada K., Kojima H., Process for supplying nitrogen in power generation with coal gasification and gas turbine, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997
28. Goktun S., Ozkaynak S., Optimum performance of a corrugated, collector-driven, irreversible Carnot heat engine and absorption refrigerator, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997
29. Sklyar M.G., Slobodskoi S.A., Electrothermal method for complex evaluation of properties of blast-furnace coke, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997
30. Bohm C., Combined (integrated) COREX ironmaking and DRI production technologies, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997
31. Smith A.R., Harbison J., Aspects of power plant and oxygen plant integration with COREX plants, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997
32. Chen B., Shemn H., Characteristics of tuyere coke and blast furnace operation, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997
33. Hayman D.A., Denton G.M., Carbothermic smelting of converter slags from mattes for recovery of metal values, Fuel and Energy Abstracts, 38 (4), p.255-255, Jul 1997.
34. Lora, E.E. S., Nascimento, M.A.R., Arrieta, F.R.P., BIG-GT and CEST technologis for sugar sane mill thermodynamics and economics assessments, 1998 (http://physics.oregonstate.edu/~hetheriw/energy/topics/doc/elec/biomass/big-gt%20and%20cest%20technologies%20for%20sugar%20cane%20mill%20-%20thermodynamic%20and%20economic%20assessments.pdf)
35. Molina A., Mondragon F., Reactivity of coal gasification with steam and CO2. Fuel, Vol. 77, No. 15, pp. 1831–1839, 1998.
36. Yan H.M., Heidenreich C., Zhang, D.K. , Mathematical modelling of a bubbling fluidised-bed coal gasifier and the significance of net flow, Fuel, 77 (9), 1067-1079, 1998
37. Yan H.M., Heidenreich C., Zhang D.K. , Modelling of bubbling fluidised bed coal gasifiers
Fuel, 78 (9), 1027-1047, 1999.
38. Chejne F., Hernandez J.P., Florez W. F., Hill A. F. J., Modelling and simulation of time-dependent coal combustion processes in stacks, Fuel, Vol. 79, 987-997, 2000.
39. Fromentin A., Etat des connaissances dans le domaine de la gazeification du bois, Department de Genie Civil, Institute d’Hydraulique et d’Energie, LASEN – Laboratorie de Systemes Energetiques, Rapport Final sur mandat du DD-EPFL, Mars 2000.
40. Hong-ming Yan and Dong-ke Zhang, Modelling of fluidised-bed coal gasifiers: elimination of the combustion product distribution coefficient by considering homogeneous combustion, Chemical Engineering and Processing, Volume 39, Issue 3, May 2000, Pages 229-237.
41. G. Schuster, G. Löffler, K. Weigl and H. Hofbauer, Biomass steam gasification – an extensive parametric modeling study, Bioresource Technology, Volume 77, Issue 1, March 71-79, 2001.
42. Asadullah M., Fujimoto K., Tomishige K., Catalytic performance of Rh/CeO2 in the gasification of cellulose to synthesis gas at low temperature. Ind. Eng. Chem. Res., 40, 5894-5900, 2001.
43. Marias F., Puiggali J. R., Flamant G., Modeling for Simulation of Fluidized-Bed Incineration Process. AIChE Journal, vol. 47, 6, pp-1438-1460, 2001.
44. Ren J.-Y., Qin W., Egolfopoulos F.N., Mak H., Tsotsis T.T., Methane reforming and its potential effect on the efficiency and pollutant emissions of lean methane-air combustion, Chemical Engineering Science,56 (4), 1541-1549, 2001.
45. Schuster G., Loffler G., Weigl K., Hofbauer H., Biomass steam gasification - an extensive parametric modeling study, Bioresource Technology, 77 (1), 71-79, 2001.
46. Chejne F., Hernandez J. P., Modelling and simulation of coal gasification process in fluidised bed. Fuel, Volume 81, Issue 13, 1687-1702, August 2002.
47. Wurzenberger J.C., Wallner S., Raupenstrauch H., Khinast J. G., Thermal Conversion of Biomass: Comprehensive Reactor and Particle Modeling. AIChE Journal, vol. 48, 10, pp 2398-2411, 2002.
48. Rollins M.L., Reardon L., Nichols D., Lee P., Moore M., Crim M., Luttrell R., Hughes E., Economic Evaluation of CO2 Sequestration Technologies Task 4, Biomass Gasification-Based Processing, Report for the period ending May 30, 2002, U.S.A. Department of Energy, Report DE-FC26-00NT40937, June 2002.
49. Mohammad Asadullah, Tomohisa Miyazawa, Shin-ichi Ito, Kimio Kunimori and Keiichi Tomishige, Demonstration of real biomass gasification drastically promoted by effective catalyst, Applied Catalysis A: General, Volume 246, Issue 1, 25 June 2003, Pages 103-116.
50. Correa, J. L. G., Discussion on the Design Parameters of Cyclonic Dryers. PhD Thesis presented to the Faculty of Mechanical Engineering of the State University of Campinas, Sao Paulo, Brazil, February 20, 2003.
51. Asadullah M., Miyazawa T., Ito S., Kunimori K., Tomishige K., Demonstration of real biomass gasification drastically promoted by effective catalyst. Applied Catalysis A: General, 246, 103–116, 2003.
52. J. J. Saastamoinen, A. Tourunen, J. Hämäläinen, T. Hyppänen, M. Loschkin and A. Kettunen, Analytical solutions for steady and unsteady state particle size distributions in FBC and CFBC boilers for non-breaking char particles, Combustion and Flame, Volume 132, Issue 3, 2003, 395-405, 2003.
53. Alves L. G., Nebra S. A., Thermoeconomic evaluation of a basic optimized chemically recuperated gas turbine cycle, International Journal of Applied Thermodynamics, 6 (1), 13-22, 2003.
54. Asadullah M., Miyazawa T., Ito S.I., Kunimori K., Tomishige, K., Demonstration of real biomass gasification drastically promoted by effective catalyst
Applied Catalysis A: General, 246 (1),103-116, 2003.
55. Mi Z., Yan L., Guo Q. X., Zhu Q. S., An, An important topic in biomass clean energy: Dynamic models of fluidized beds, Chinese Journal of Chemical Physics, 16(5), 350-356, 2003.
56. Effect of steam and equivalence ratio (ER) on products of biomass gasification, Zhou M., Yan L. F., Wang Y. Q., Guo Q. X., Rare Metal Materials and Engineering, 2004.
57. van den Enden P.J., Lora E.S. , Biomass and Bioenergy, Design approach for a biomass fed fluidized bed gasifier using the simulation software CSFB. Biomass and Bioenergy, 26 (3), 281-287, 2004.
58. Solimene R., Marzocchella A., Ragucci R., Salatino P., Flow structures and gas-mixing induced by bubble bursting at the surface of an incipiently gas-fluidized bed. Ind. Eng. Chem. Res., 2004.
59. Lee S.W., Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification, Semi-Annual Technical Report, reporting period from 4/1/2004 to 9/30/2004, U.S.A. Department of Energy, Report Number: DE-PS26-02NT41681.
60. Alves L. G., Nebra S. A., Basic chemically recuperated gas turbines - Power plant optimization and thermodynamics second law analysis, Energy, 29 (12-15 SPEC. ISS.), 2385-2395, 2004.
61. H. Morita, F. Yoshiba, N. Woudstra, K. Hemmes and H. Spliethoff, Feasibility study of wood biomass gasification/molten carbonate fuel cell power system—comparative characterization of fuel cell and gas turbine systems, Journal of Power Sources, Volume 138, Issues 1-2 , 15,31-40, 2004.
62. Corella J., Sanz A. , Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state, Fuel Processing Technology, 86 (9), p.1021-1053, May 2005
63. B. Khiari, F. Marias, F. Zagrouba and J. Vaxelaire, Use of a transient model to simulate fluidized bed incineration of sewage sludge, Journal of Hazardous Materials, Volume 135, Issues 1-3, 31, 200-209, 2006.
64. Basu P., Combustion and Gasification in Fluidized Beds, CRC Press, Miami, 2006.
65. Liang Yu, Jing Lu, Xiangping Zhang and Suojiang Zhang, Numerical simulation of the bubbling fluidized bed coal gasification by the kinetic theory of granular flow (KTGF),
Fuel, Volume 86, Issues 5-6, 722-734, 2007.
66. Jarungthammachote S.,Dutta A. , Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier, Energy, 32 (9), p.1660-1669, 2007.
67. Jorge A. Altamirano-Bedolla, Alejandro Mani-González, Emilio Manzanares-Papayanopoulos, Manuel Fernández-Montiel, and César A Romo-Millares. Preliminary Study of the Gasification Process of Mexican Fuels at Atmospheric Pressure. Gerencia de Procesos Térmicos, Instituto de Investigaciones Electricas, Reforma 113, Cuernavaca, 62490, Mexico, 2007. http://aiche.confex.com/aiche/s07/techprogram/P81135.HTM
68. Animesh Dutta, e-learning course: Bio-energy for achieving MDGs, Energy field of study, School of Environment, Resources and Development, Asian Institute of Technology 5 June 2007 http://www.energyforumasia.org/e-learning/materials/Bioenergy-04-Dutta.pdf
69. Tinaut F.V., Melgar A., Perez J.F., Horrillo A., Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study, Fuel Processing Technology, 89(11). 1076-1089, 2008, DOI: 10.1016/j.fuproc.2008.04.010
70. Zhang T., Feng G., Lu J., Xiang W., Robust Constrained Fuzzy Affine Model Predictive Control With Application to a Fluidized Bed Combustion Plant, IEEE Transactions on Control Systems Technology, 16(5), 1047-1056, 2008.
71. Mahecha-Botero A., Grace J.R., Elnashaie S.S.E.H., Lim C.J., Advances in modelling of fluidized-bed catalytic reactors: A comprehensive review, Chemical Engineering Communications, 196(11), pp 1375-1405, 2009.
72. Werther J., Hartge E., Ratschow L., Wischnewski R., Simulation-supported measurements in large circulating fluidized bed combustors, Particuology, 7 324–331, 2009.
74. Chen P., Cheng Y., Deng S., Lin X., Hyang G., Ruan R., Utilization of almond residues, International Journal of Agricultural and Biological Engineering, 3(4), pp1-18, 2010
75. Kempegowda R., Assabumrungrat S., Laosiripojana N., Thermodynamics analysis of gasification of Thailand rice husks with air, and mixed air/steam for hydrogen-rich gas production, International Journal of Chemical Reactor Engineering, 8, art. No. A158, 2010.
76. De Souza Jr. M.B., Barreto Jr. A.G., Nemer L.C., Soares P.O., Quitete C.P.B., A study on modelling and operational optimization of biomass gasification processes using neural networks, AIChE Annual Meeting, Conference Proceedings, 2010.
77. Gomez-Barea A., Leckner B., Modeling of biomass gasification in fluidized bed, Progress in Energy and Combustion Science, 36(4), pp 444-509, 2010.
78. Ortiz P.A.S., Venturini O.J., Lora E.E.S., Technical and economic evaluation of IGCC systems using coal and petroleum coke considering the Brazilian scenario, Proceedings of the ASME Turbo Expo, 1, pp 711-719, 2010.
79. Nermoen A., Some effects of gas-induced fluidization in dry granular media. Ph.D. Thesis, University of Stavanger (UiS), 2010.
80. Ortiz, P. A. S., Technical And Economic Evaluation of IGCC Systems Using Coal and Petroleum Coke Considering the Brazilian, MSc. Dissertation (Emphasis Energy Conversion) - Department of Mechanical Engineering, Federal University of Itajubá – UNIFEI, Itajubá, M.G., Brazil, 141 p., 2011.
81. Ortiz, P. A. S.; Venturini, O. J.; Lora, E. E. S. Technical And Economic Evaluation of IGCC Systems Using Coal and Petroleum Coke Considering the Brazilian, ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Paper No. GT2011-46836, pp. 711-719, doi:10.1115/GT2011-46836
82. Engelbrecht A.D., North B.C., Oboirien B.O., Everson R.C., Neomagus H.W.P.J. Fluidised bed gasification of high-ash South African coals: An experimental and modelling study, IFSA 2011 Conference on Industrial Fluidization, South Africa, Johannesburg, November 16-17, 2011, http://researchspace.csir.co.za/dspace/bitstream/10204/5490/1/Engelbrecht3_2011.pdf
83. Siedlecki, M., On the gasification of biomass in a steam-oxygen blown CFB gasifier: technology background, experiments and mathematical modeling. Ph.D. Thesis presented to the Delft University, Holland, on December 22nd, 2011.
84. Moutsoglou, A., A comparison of prairie cordgrass and switchgrass as a biomass for syngas production, Fuel, 95, 573-577, 2012.
85. Riehl, R. R., Shahateet, C. A., de Souza, L. S., Karam Jr., D., Biomass gasification unit using sugar cane bagasse for power generation, Recent Advances in Energy, Environmental and Economic Development, 2012. http://www.wseas.us/e-library/conferences/2012/Paris/DEEE/DEEE-34.pdf
86. Suh D.-M., Sun X., Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms, International Journal of Greenhouse Gas Control, Vol. 17, pp 388-396, 2013.
87. Lee, A., Miller, D.C., A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber, Ind. Eng. Chem. Res., 52 (1), pp 469-484, 2013.
88. Brusca S., Chiodo V., Galvagno A., Lanzafame R., Garrano A. M. C., Analysis of reforming gas combustion in Internal Combustion Engine, 68th Conferene of the Italian Machines Engineering Association, ATI2013, Energy Procedia 45, 899-908, 2014.
89. Pellegrini L.F., Oliveira Junior S., Burbano J.C., Supercritical steam cycles and biomass integrated gasification combined cycles for sugarcane mills, Energy (35-2), 1172-1180, 2010.
90. Marias F., Letellier S., Cezac P., Serin J.P., Energetic analysis of gasification of aqueous biomass in supercritical water, Biomass and Bioenergy, 35 (1), 59-73, 2011. doi:10.1016/j.biombioe.2010.08.030
91. Haseli Y., van Oijen J.A., de Goey L.P.H., A detailed one-dimensional model of combustion of a woody biomass particle, Bioresource Technology, 102, 9772-9782, 2011. doi:10.1016/j.biortech.2011.07.075
92. Gnanapragasam N. V., Reddy B. V., Rosen M. A., Sustainability of an energy conversion system in Canada involving large-scale integrated hydrogen production using solid fuels, International Journal of Energy and Environment, V. 2(1), 1-38, 2011.
93. Kozlov A., Svishchev D., Donskoy I., Keiko A.V., Thermal analysis in numerical thermodynamic modelling of solid conversion, J. Thermal Analysis and Calorimetry, 109(3), 2012, DOI: 10.1007/s10973-012-2626-6.
94. Ahmed T.Y., Ahmad M.M., Yusup S., Inayat A., Khan Z., Mathematical and computational approaches of design of biomass gasification for hydrogen production: A review, Renewable and Sustainable Energy Reviews, 16, 2304-2315, 2012.
95. Arena U., Process and technological aspects of municipal solid waste gasificatin. A review, Waste Management, 32, 652-639, 2012
96. Dudynski M., Kwiatkowski K., Bajer K., From feathers to syngas – Technologies and devices, Waste Management, 32, 685-691, 2012. doi:10.1016/j.wasman.2011.11.017
97. Chao Li, Zhenghua Dai, Zhonghua Sun, and Fuchen Wang, Modeling of an Opposed Multiburner Gasifier with a Reduced-Order Model, Industrial & Engineering Chemistry Research, 52(16), 5825-5834, 2013. doi: 10.1021/ie3030505
98. El-Eman R., Dincer I., Naterer G. F., Energy and exergy of an integrated SOFC and coal gasification, International J. of Hydrogen Energy, 37, 1689-1697, 2014. DOI: 10.1016/j.ihydene.2011.09.139
99. Couto N., Rouboa A., Silva V., Monteiro E., Bouziane, K., Influence of the biomass gasification processes on the final composition of syngas, Energy Procedia, 36, 596-606, 2013.
100. Donskoi I.G., Keiko A.V., Kozlov A.N., Svishchev D.A., Shamanskii V.A., Calculation of the fixed bed coal gasification regimes by the use of thermodynamics model with macrokinetic constrains, Thermal Engineering, Vol. 60, No. 12, pp. 904–909, 2013.
101. Suh D-M., Sun X., Particle-scale CO2 adsorption kinetics modelling considering three reaction mechanisms, International Journal of Greenhouse Gas Control, 17, 388-396, 2013, http://dx.doi.org/10.1016/j.ijggc.2013.05.029
102. Sette E., Pallares D., Johsson F., Experimental evaluation of lateral mixing of bulk solids in a fluid-dynamically down-scaled bubbling fluidized bed, Powder Technology, 263, 74-80, 2014.
103. Aldana H., Lozano F.J., Acevedo J., Evaluating the potential for producing energy from agricultural residues in Mexico using MILP optimization, Biomass and Bioenergy, 67, 372-389, 2014.
104. Hwang I-H., Kobayashi J., Kawamoto K., Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF, Waste Management, 34(2), 402-410, 2014.
105. Beheshti S.M., Ghassemi H., Shahsavan-Markadeh R., A comprehensive study of gasification of petroleum wastes based on a mathematical model, Petroleum Science and Technology, 32:22, 2674-2681, 2014, DOI: 10.1080/10916466.2014.923455
106. Yia Z., Oveduna A.O., Maojiana W., Gebreegzaiabherb T., Yua Z., Jina L., Waia H.C., Modeling, integration and optimization of biomass and coal co-gasification, The 6th International Conference on Applied Energy – ICAE2014, Energy Proceedia, 61, 113-116, 2014.
107. Shrestha, R., Experimental Analysis and Modelling of Biomass Gasification using a Downdraft Gasifier, M.Sc. Thesis, Auburn University, Alburn, Alabama, USA, December 13, 2014.
108. Murthy B.N, Sawarkar A.N., Deshmukh N.A., Mathew T., Joshi J.B., Petroleum coke gasification: a review, The Canadian J. of Chemical Engineering, 92, 441-468, 2014. DOI: 10.1002/cjce.21908
109. Tchapda A.H., Pisupati V., A review thermal co-conversion of coal and biomass/waste, Energies, 7, 1098-1148, 2014. Doi: 10.3390/en7031098
110. Perez J.F., Melgar A., Tinaut F.V., Modeling of fixed bed downdraft biomass gasification: Application on lab-scale and industrial reactors, International J. of Energy Research, 38, 319-338, 2014, DOI: 10.1002/er.3045
111. Dyakov L.V., Baron G.V., Bram S., Contino F., De Ruyck J., Experimental measurements and modeling using CeSFaMBTM software of the product gas components on the 2MWTH Gasifier Plant, Energy Research Journal, 5(1), 26-32, 2014. DOI: 10.3844/erjsp.2014.26.32
112. Indrizzi V., Costa M., Cappucio G., Massarotti N., Assessment of a 0D-S model for wate or biomass gasification, Eurasia 2014 Waste Management Symposium, 28-30 April 2014.
113. Mendiburu A.Z., Carvalho Jr. J. A., Coronado C.J.R.,Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models, Energy 66, 189-201, 2014.
114. Costa M., Massarotti N., Indrizzi V., Rajh B., Yin C., Samec N., Engineering bed models for solid fuel conversion process in grate-fired boilers, Energy 77, 244-253, 2014.
115. Wei W. Li, Ke-Zhong L., Xuan Q., Rong Z., Jicheng B., Simulation of catalytic coal gasification in a pressurized jetting fluidized bed: Effects of operating conditions, Fuel Processing Technology, 126(10), 504-512, 2014. http://dx.doi.org/10.1016/j.fuproc.2014.06.006
116. Beheshti S.M., Ghassemi H., Shahsavan-Markedeh R., Process simulation of biomass gasification in a bubbling fluidized bed reactor, Energy Conversion and Management, 94, 345-352, 2015.
117. Beheshti S.M., Ghassemi H., Shahsavan-Markadeh R., Modeling steam gasification of orimulsion in the presence of KOH: A strategy for high-yield hydrogen production, Petroleum Science and Technology, 33, 218-225, 2015.
118. Fournel S., Marcos B., Godbout S., Heitz M., Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels, Bioresource Technology, 179, 165-172, 2015.
119. Hosseini S.E., Bagheri G., Khaleghi M., Wahid M.A., Combustion of biogas released from palm oil mill effluent and the effects of hydrogen enrichment on the characteristics of the biogas flame, Journal of Combustion, ID 612341, 2015, http://dx.doi.org/10.1155/2015/612341
120. Martinez, C.I.P., Energy and sustainable development in cities: A case study of Bogota, Energy, 28 Feb., 2015, doi:10.1016/j.energy.2015.02.003
121. Lombardi L., Carnevale E, Corti A., A review of technologies and performances of thermal treatment systems for energy recovery from waste, Waste Management, 37, 26-44, 2015, http://dx.doi.org/10.1016/j.wasman.2014.11.010
122. Khaleghi M., Hosseini S.E., Wahid MA, Experimental and numerical investigations of biogas vortex combustion, Proceeding of the Institution of Mechanical Engineers Part A, Journal of Power and Energy, 1-15, 2015, DOI: 10.1177/0957650915584717
123. Barba D., Brandani F., Capocelli M., Luberti M., Zizza A., Process analysis of an industrial waste-to-energy plant: Theory and experiments, Process Safety and Environment Protection, 96, 61-73, 2015. http://dx.doi.org/10.1016/j.psep.2015.04.007
124. Beheshti S.M. Ghassemi H., Shahsavan-Markadeh R., Process simulation of biomass gasification in a bubbling fluidized bed reactor, Energy Conversion and Management, 94, 345-352, 2015, http://dx.doi.org/10.1016/j.enconman.2015.01.060
125. Coppola A., Solimene R., Bareschino P., Salatino P., Mathematical modelling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels, Applied Energy, article in press, 2015.
126. Wang L., Agyemang S.A., Amini H., Shahbazi A., Mathematical modeling of production and biorefinery of energy crops, Renewable and Sustainable Energy Reviews, 43, 530-544, 2015. http://dx.doi.org/10.1016/j.rser.2014.11.008
127. Khanmohammadi S., Atashkari K., Kamali R.K., Performance assessment and multi-objective optimization of a trigeneration system with a modified biomass gasification model, Modares Mechanical Engineering Journal, 15(9), 209-222, 2015.
128. Sasongko D., Arifpin N.Y., Rasrendra C.B., Idarto A., Numerical simulation of coal pyrolysis with Tar and Gas products prediction, Asia-Pacific Journal of Chemical Engineering, 2015. DOI: 10.1002/apj.1958
129. Stark, A. K., Multi-Scale Chemistry Modeling of the Thermochemical Conversion of Biomass in a Fluidized Bed Gasifier, Ph.D. Thesis present to the Massachusetts Institute of Technology, Jan. 2015. DOI: 10.13140/RG.2.1.4795.1849
130. Su X., Jin H., Guo S., Guo L., Numerical study on biomass model compound gasification in a supercritical water fluidized bed reactor, Chem. Eng. Science, 134, 737-745, 2015. DOI: 10.1016/j.ces.2015.05.034
131. Ficco G., Celenza L., Dell’Isola M., Frattolillo A., Vigo P., Experimental evaluation of thermal mass smart meters influence factors, Journal of Natural Gas Science & Engineering, 2016. doi:10.1016/j.jngse.2016.04.025
132. Kazakov M., Dik P. P., Klimov O. V., Noskov A. S., Influence of the conditions of hydrogenation treatment of black oil on the yield and properties of the products obtained, Russian Journal of Applied Chemistry 89(2):254-262, 2016. DOI: 10.1134/S1070427216020154
133. Sikarwar V., Zhao M., Clough P., Fennell, An overview of advances in biomass gasification, Energy & Environment Science, June 2016. DOI: 10.1039/C6EE00935B
134. Krzywanski J. et al, A 1.5D model of a complex geometry laboratory scale fluidized bed CLC equipment, Powder Technology, 2016. on line: http://www.sciencedirect.com/science/article/pii/S0032591016306258 (http://dx.doi.org/10.1016/j.powtec.2016.09.041)
135. Arabkhalaj A., Ghassemi H., Markadeh R. S., Thermodynamic evaluation of integrated gasification combined cycle: Comparison between high-ash and low-ash coals, Int. J. Energy Res, 40,1638–1651, 2016 (DOI: 10.1002/er.3541) (http://onlinelibrary.wiley.com/doi/10.1002/er.3541/epdf)
136. Litka R., Kalisz S., Numerical modelling of a stoker furnace operated under indirect co-firing of biomass, Chemical and Process Engineering, 37 (2), 235-249, 2016. DOI: 10.1515/cpe-2016-0019
137. Serrano D., Kwapinska M., Horvat A., Sánchez-Delgado S., Leahy J.J., Cynara cardunculus L. gasification in a bubbling fluidized bed: The effect of magnesite and olivine on product gas, tar and gasification performance, Fuel,173, 247-259, 2016. DOI: 10.1016/j.fuel.2016.01.051
138. Jaakko Saastamoinen J., Tourunen A., Leino T., Pikkarainen T., Modeling of particle size distribution of limestone in sulfur capture in air and oxy-fuel circulating fluidized bed combustion, Energy and Emission Control Technologies, 8, 41–52, 2016.
139. Ephraim A., Valorization of wood and plastic waste by pyro-gasification and syngas cleaning. Ph.D. Thesis, University of Tolullouse, November, 2016.
140. Zylka A., Krzywanski J., Czakiert T., Idziak K., Kulicki K., Jankowska S., Numerical simulations of fluidization dynamics in a hot model of a CLC process, E3S Web of Conferences 14, 04002, 2017. DOI: 10.1051/e3sconf/20171304002
141. Lattanzi A.M., Hrenya C.M., Indirect Conduction in Gas–Solids Systems: Static vs. Dynamic Effects, AIChE, 2017, DOI 10.1002/aic.15802
142. Yukun Hua, Jihong Wanga, CK Tanb, Chenggong Sunc, Hao Liuc, Coupling detailed radiation model with process simulation in Aspen Plus: A case study on fluidized bed combustor, Applied Energy, 2017, http://dx.doi.org/10.1016/j.apenergy.2017.08.030
143. Malinowski A., Chwialkowski W., Energy recycling of RDF fraction of municipal solid waste by continuous pyrolysis, Chem. Environ. Biotechnol., 20, 27–33, 2017. Doi: doi.org/10.16926/cebj.2017.20.05
144. Pretorius G. N., John R. Bunt J. R., Gräbner M., Neomagus H., Waanders F. B., Everson R. C., Strydom C. A., Evaluation and prediction of slow pyloysis derived from coals of different rank, Journal of Analytical and Applied Pyrolysis, 128, 156-167, 2017. http://dx.doi.org/10.1016/j.jaap.2017.10.014
145. Fortunato V. A., Caneppele F. L., Ribeiro R., J. A. Rabi J. A., Development of in-house lattice-Boltzmann simulator of bioreactors for wastewater treatment: basic concepts and initial results, Water Science & Tech., 77(3), 838-847, 2017. DOI: 10.2166/wst.2017.597
146. Panahi A., Tarakciouglu M., Schieman M., Delichatsios M., Levendis Y.A., On the particle sizing of torrefied biomass for co-firing with pulverized coal, Combustion and Flame, 194, 72-84, 2018. doi.org/10.1016/j.combustflame.2018.04.014
148. Meng X., Sun R., Ismail T.M., El-Salam M.A., Zhou W., Zhang R., Ren X., Assessment of primary air on corn straw in a fixed bed combustion using Eulerian-Eulerian approach, Energy, 151, 501-519, 2018. https://doi.org/10.1016/j.energy.2018.03.081
149. Meng X., Sun R., Ismail T. M., Zhou W., Ren X., Zhang R., Parametric studies on corn straw combustion characteristics in a fixed bed, Energy, 158, 192-203, 2018. https://doi.org/10.1016/j.energy.2018.06.060
150. Gagliano A., Nocera F. , Bruno M. , Blanco I., Effectiveness of thermodynamic adaptative equilibrium models for modeling the pyrolysis process, Sustainable Energy Technologies and Assessments, 27, pp 74-82, 2018. https://doi.org/10.1016/j.seta.2018.03.006
151. Zylka A., Kryzywanski J., Czakiert T., Idziak K., Sosnowski M., Grabowska K., Prauzner T., Nowak W., Numerical simulations of CuO-based oxygen carrier CLC by the use of CeSFaMB the 4th Generation, 5th International Conference on Contemporary Problems of Thermal Engineering, CPOTE 2018, 18-21 September 2018, Gliwice, Poland, Institute of Thermal Technology.
152. Krzack S., Gutte H., Meyer B., Pyrolyse, , Stoffliche Nutzung von Braunkohle pp 297-426, Springer, 2018.
153. Zylka A., Kryzywanski J., Czakiert T., Idziak K., Sosnowski M., Grabowska K., Prauzner T., Nowak W.,The 4th Generation of CeSFaMB in numerical simulations for CuO-based oxygen carrier in CLC system, Fuel, 255(1), 2019
154. Tîrtea R. N., Bulmău C., Ionescu G., Mărculescu C., The initiation stage of Food Court Waste during air versus steam gasification processes, E3S Web of Conferences 112, 01018 (2019) TE-RE-RD 2019, https://doi.org/10.1051/e3sconf/201911201018
155. Sikarwar V.S., Hrabovskya M., Van Oost G., Pohorely M., Jeremias M., Progress in waste utilization via thermal plasma, Progress in Energy and Combustion Science 81, 2020. https://doi.org/10.1016/j.pecs.2020.100873
156. Sharifzadeha M., Sadeqzadeha M., Guoa M., Borhani T.N. , Konda N.V.S.N.M., Garcia M.C., Wang L., Hallett J., Shah N., The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions, Progress in Energy and Combustion Science, 71, 108, 2019. https://doi.org/10.1016/j.pecs.2018.10.006
157. Ferreira S., Monteiro E., Calado L., Silva V., Brito P., Vilarinho C., Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor, Energies 12, 4413, 2019. doi:10.3390/en12234413
158. Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika L., A Comprehensive Three-Dimensional Analysis of a Large-Scale Multi-Fuel CFB Boiler Burning Coal and Syngas. Part 1. The CFD Model of a Large-Scale Multi-Fuel CFB Combustion, Entropy, 22, 964, 2020. https://doi.org/10.3390/e22090964
159. Qiu P., Dai Z., Xu J., Guo Q., Yu G., Wang F., On-line reset control of a commercial-scale opposed multi-burner coal-water slurry gasification system using dynamic re duce d-order model, Computers and Chemical Engineering, 143, 1-10, 2020. https://doi.org/10.1016/j.compchemeng.2020.107074
160. Hooshmand P., KhakRah H., Kavoosi Balootaki H.K., Jamalabadi M.Y.A., Recycling municipal solid waste utilizing gasifcation technology: a case study, Journal of Thermal Analysis and Calorimetry, 139:2705–2718, 2020. https://link.springer.com/article/10.1007/s10973-019-08986-z
161. Fradet Q., Novel modeling approaches for the entrained-flow gasification of bio-slurries, Ph.D. thesis, accepted by the Faculty of Aerospace Engineering and Geodesy of the Universität Stuttgart, Institute of Combustion Technology for Aerospace Engineering, University of Stuttgart, Germany, June 30, 2020. https://www.researchgate.net/publication/349142820_Novel_modeling_approaches_for_the_entrained-flow_gasification_of_bio-slurries/references
162. Meng X., Zhou W., Yan Y. , Ren X., Ismail T. M. , Sun R., Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed, Energy, v. 210, 1-11, 2020. https://doi.org/10.1016/j.energy.2020.118481
163. Prabhakar A., Sadhukhan A.K., Gupta P., Experimental and modelling studies on combined pyrolysis and gasifcation of large coal particle in steam and CO2 ambience, Chemical Papers, 2021, doi: 10.1007/s11696-021-01508-y
164. Valentim C.A., Rabi J.A., David S.A., Fractional Mathematical Oncology: On the potential of non-integer order calculus applied to interdisciplinary models, Biosystems, Volume 204, June 2021, 104377, https://doi.org/10.1016/j.biosystems.2021.104377
165
IPT - Institute for Technological Research
Senior Scientific Researcher from September 1980 to September 1991 and from December 1993 until February 1998. Basic activities:
Senior Chemical Engineer in the Process Development Department, from October 1991 to November 1993. Basic activities:
The following activities have been developed with this company:
Engineer at the Planning Department of this large petrochemical plant near São Paulo city, from August 1974 to August 1975. Basic activities:
Junior Engineer from December 1973 to August 1974. Basic activity: design of conventional and unconventional industrial equipment and systems, such as distillation systems, heat exchangers, combustion chambers, and dryers.
Supervising the development and design of a medium-size plant to produce TBC (Terc-Butil-Catechol), Pyrocatechol, and Hydroquinone. Also created a special computer program to help in the mass and energy-balance studies as well as for the simulation of the complete distillation system was developed.
For the universities of Antioquia, National, and Bolivarian Pontiff Catholic a consulting work was developed. The project included conceptual, basic, and detailed design of a fluidized-bed gasification pilot unit. The project and operation conditions were optimized using the comprehensive simulation program for fluidized bed reactors.
Between 10/2000 and 11/2001 providing technical support to development of petroleum coke gasification process. The work included adaptation of the CSFB (Comprehensive Simulator for Fluidized Bed equipment) simulator to predict operations were petroleum coke would be fed into an atmospheric gasifier. After that, the program was used to optimize the design of a large pressurized industrial-scale gasifier. The work was developed for PETROBRAS.
Between 5/2005 and 7/2005 developing simulation routines to help on the conceptual design of unconventional heat exchangers.
Between 12/2007 and 12/2009, collaboration with NEST (Excellence Nucleous of Thermal Generation of Distributed Energy) of University of Itajuba (Brazil) and Petrobras Research Center on development of of circulating bed gasifier. Work applied CSFMB (Comprehensive Simulator of Fluidized and Moving Bed).
Between 06/2008 and 01/2009, consulting to Vale Energy Solutions for the development of bituminous coal gasifiers. Two scales were studied: 1 MW and 20 MW. Work applied CSFMB (Comprehensive Simulator of Fluidized and Moving Bed).
During 2014, consulting on feasibility of biomass gasification for industrial application of fuel gas to large furnaces. The work involved optimizations of fluidized bed gasifiers as well evaluation of applicability of the produced gas to furnaces.
· M.Sc. of Maria Eugênia de Souza Pikman on "Drying of Carbonaceous Solids in Fluidized-Beds”, 1989.
· Post-Doctoral of Dr. Phillip Dennis Leveson (Ph.D. from the University of Sheffield, United Kingdom) on “Improvements on the Modelling of Hydrogen Sulphide and Sulphur Dioxide Emissions from Fluidized Bed Combustors and Gasifiers,”. From November 1st, 1998 until November 1st, 1999.
· Ph.D. of Wilson de Aguiar Beninca on “Studies on advanced processes for power generation using fluidized beds and consuming biomass”. Started on August 2012. University of Sao Paulo (USP) (SP, Brazil)
· Scientific Initiation of Kevin Bachion Ceribeli on “Studies of Advanced Power Generation Processes based on Municipal Solid Waste (MSW)”.
· M.Sc. of Kevin Bachion Ceribeli on “Studies of Advanced Power Generation Processes based on Municipal Solid Waste (MSW)”.
· M.Sc. of Andres Bernal on "Advanced Power Generation Process Based on FSIG/GT (Fuel-Slurry Gasification/Gas Turbine) Consuming Sugar-Cane Bagasse.
· M.Sc. of Bernal, A. F. B., “Studies on Advanced Power Generation Based on Sugar Cane Bagasse Applying Bubbling Fluidized Bed Gasifiers, presented to the University of Campinas on July 31st, 2014.
· Scientific Initiation of Kevin Ceribeli on “Contribution to the study of advance thermoelectric generation consuming municipal solid waste.”
· M.Sc. of Kevin Ceribeli on “Contribution to the study of advance thermoelectric generation consuming municipal solid waste.
· M.Sc. of Andres Felipe Rodriguez Torres on “Studies on Thermoelectric Power Generation Consuming Municipal Solid Waste (MSW) and Using Bubbling Fluidized Bed Gasifier” presented of the University of Campinas, on February 22nd, 2016
· M.Sc. of Eduardo Henrique Salermo de Lima on “Thermelectric power generation based on high-ash coal applying the FSIG/GT process; effect of particle diameter on the process efficiency”. Presented to the University of Campinas on February 24th, 2016.
· Scientific Initiation of Henrique Mantovani on “Contribution to the study of advanced power generation process consuming biomass and glycerol”, 2016.
· M.Sc. of Kevin B. Ceribeli em “Fuel-slurry integrated gasifier/gas turbine process using municipal solid waste – study on the influence of dry solid concentration in the slurry on the overall power efficiency of the process”. University of Campinas, 2017.
· M.Sc. of Michael Camara de Araújo on “Effect of dry-solid sugar-cane bagassel concentration in the slurry of glycerol consumed by a FGSIG/GT process”. University of Campinas, 2017.
· M,Sc, of Bruno Fernando de Queiroz dos Santos on “Effect of dry-solid municipal solid waste concentration in the slurry of glycerol consumed by a FGSIG/GT process”. University of Campinas, 2017.
South Dakota State University (USA)
January-May 2008
Copyright 2013 dss. All rights reserved.
dss
Sao Paulo
Brazil
ph: +55-19-99710.7134
dss